# Observing changes in the urban thermal environment from space

John Remedios<sup>1,2</sup>, Mike Perry<sup>1,2</sup>, Darren Ghent <sup>1,2</sup> and Heiko Balzter<sup>1,3</sup> <sup>1</sup>National Centre for Earth Observation, University of Leicester <sup>2</sup>Earth Observation Science, University of Leicester <sup>3</sup>Centre for Landscape and Climate Research, University of Leicester

Phoenix, AZ Phoenix

Copernicus for Future Cities Workshop 2018





DODERE

### Introduction

- Temperature is a fundamental quantity impacting urban living and productivity, addressing the health and sustainability of city life
- Areas of high relevance:
  - Citizen health and comfort
  - Urban monitoring (sprawl, typology, density, heat stress) Urban policy, planning and living Urban microclimate

  - Climate adaptation and resilience
  - Built environment optimisation, materials, performance and legislation
- The monitoring and assessment of the thermal environment requires spatial resolution that so far has precluded air temperatures from being a viable parameter in most cities.
- In addition, land surface emissivity provides further information on surface properties adding to that available from other sensors.











# A HIERARCHY OF LST OBSERVATIONS

| SCALES                       | MISSIONS                           | CALIBRATION            | ACCURACY              |
|------------------------------|------------------------------------|------------------------|-----------------------|
| 5km, "fast" (15<br>mins+)    | MSG, GOES,<br>HIMAWARI             | Good to<br>medium      | Very good to moderate |
| 1 km (re-visit<br>dependent) | Sentinel-3,<br>Terra/Aqua,<br>JPSS | Excellent to very good | Very good to<br>good  |
| 100 m                        | Landsat, ASTER                     | Next slide             | Next slide            |

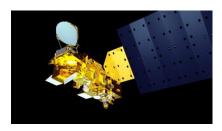
User needs are not met with sufficient accuracy and sufficient coverage





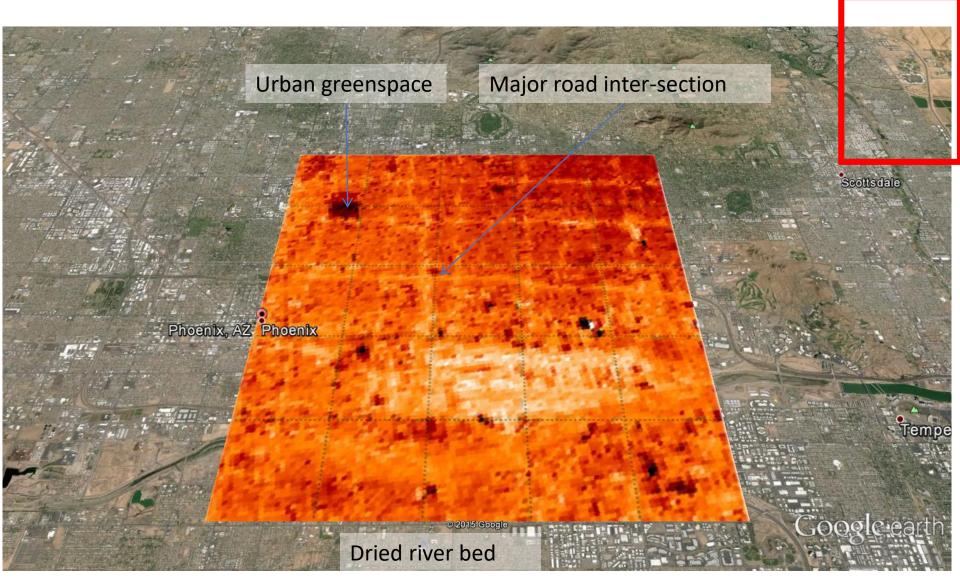


# HI-SPATIAL RES INSTRUMENTATION

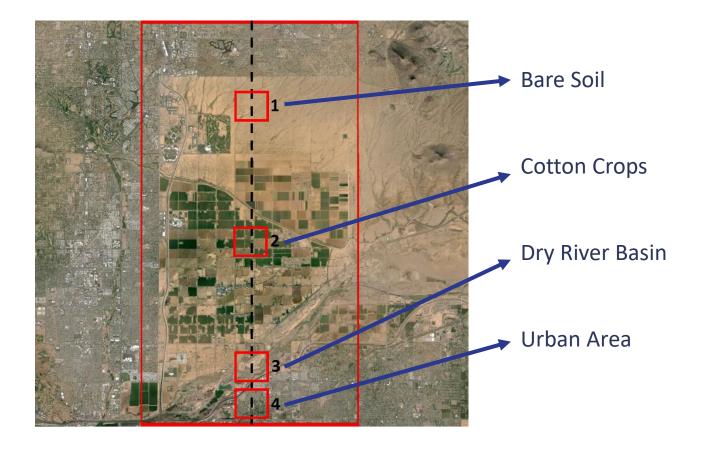

#### LANDSAT-8

- Two channels I thermal infra-red
- > 100 m spatial resolution (30 m re-sampled)
- 16 day revisit
- Poor calibration and stray light relative to medium resolution sensors. Ttwo channel retrievals not used
- Only allows retrievals of LST and not emissivity
- Accuracies of 2 K at best but on case by case
- Semi-operational

#### <u>ASTER</u>


- 5 channels in thermal infra-red
- 90 m spatial resolution
- Tasking only so sporadic coverage
- Relatively poor calibration
- Allows retrieval of both LST and emissivity (LST to ~1 K)
- Non-operational and non-standard re-visit

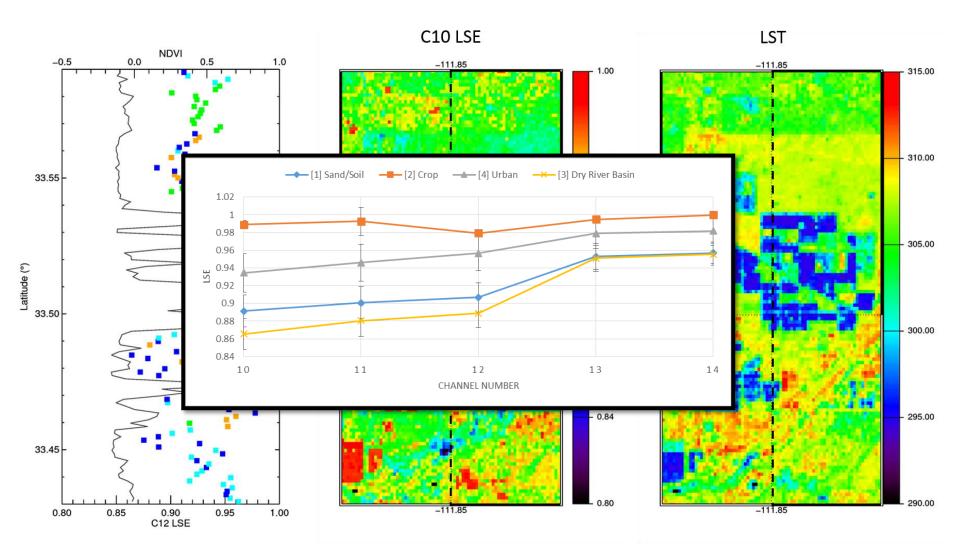
User needs are not met with sufficient accuracy and sufficient coverage



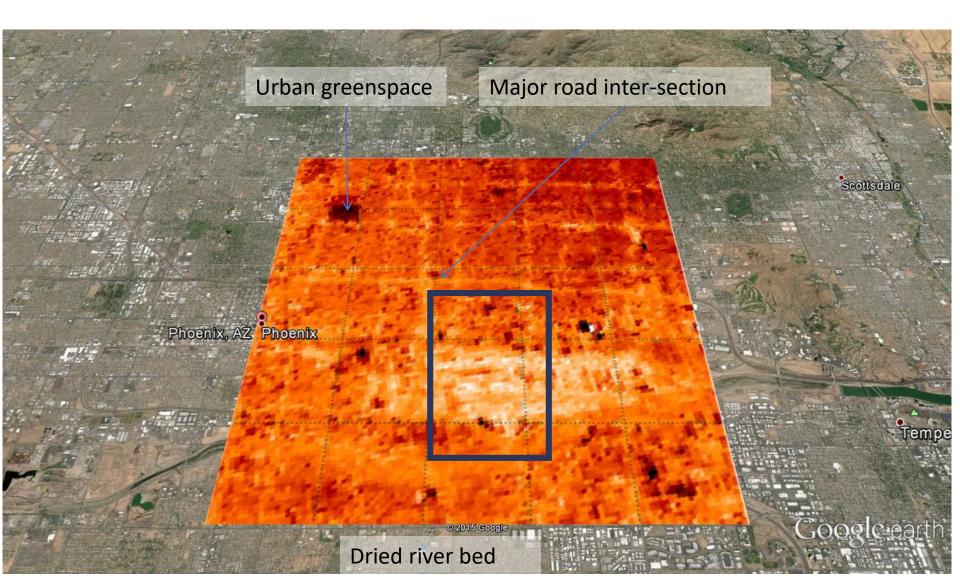



#### LST AND LSE WITH ASTER

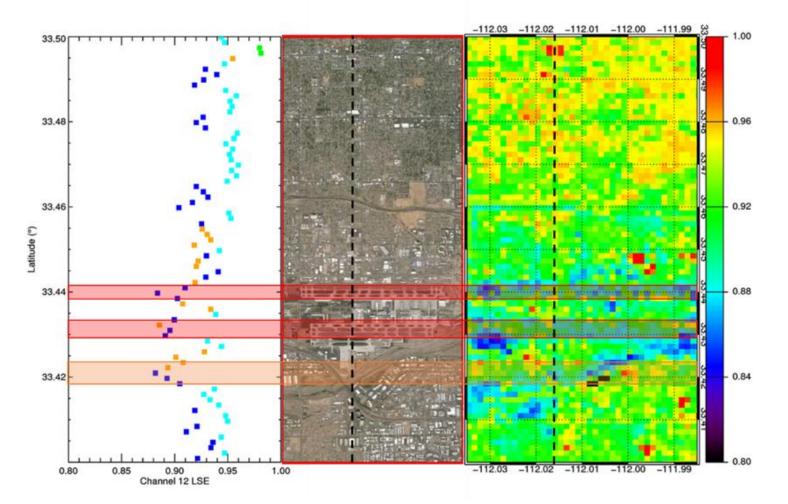



#### AGRICULTURE: PHOENIX









#### **AGRICULTURE: PHOENIX**

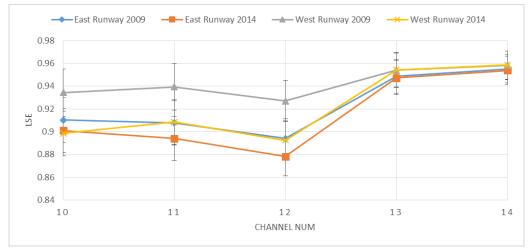


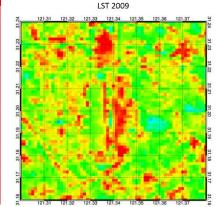
#### LST AND LSE WITH ASTER



#### **Urban and Natural Impervious: PHOENIX**






### AIRPORT EXPANSION: SHANGHAI

Monitoring the LST and LSE change during the extension of Hongqiao Airport in Shanghai











National Centre for Earth Observation

#### Urban Energy Balance

Satellite thermal remote sensing data is already being used to assess the Urban Energy Budget.

Knowledge of the land surface type combined with the Land Surface Temperature enables the calculation of the longwave fluxes and estimates of anthropogenic heat contributions

Right: A Study over Fuzhou, China by Zhang et.al. 2013 \*

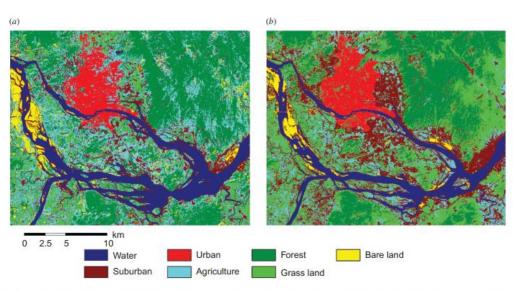



Figure 2. Land-cover types of the study area derived from the TM image acquired in 1989 (*a*) and ETM+ image acquired in 2001 (*b*).

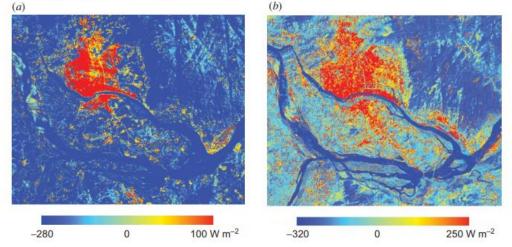
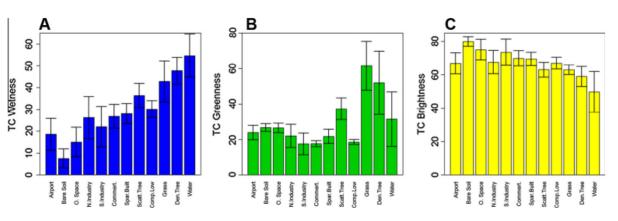



Figure 5. Anthropogenic heat discharge from sensible heat flux on (*a*) 15 June 1989 and (*b*) 4 March 2001.



\* Youshui Zhang , Heiko Balzter & Xiongchang Wu (2013) Spatial–temporal patterns of urban anthropogenic heat discharge in Fuzhou, China, observed from sensible heat flux using Landsat TM/ETM+ data, International Journal of Remote Sensing




### **Urban Heat Island Studies**

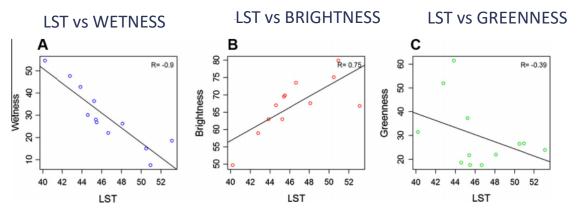
LST has strong correlations with several key urban parameters.

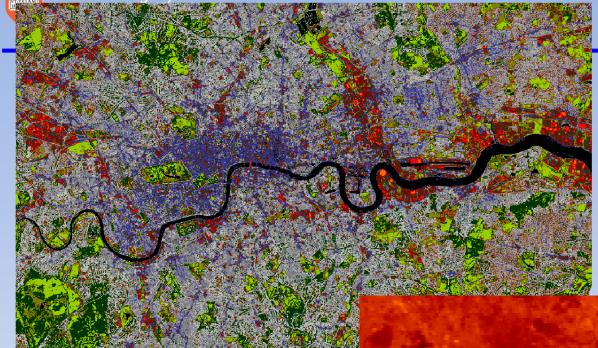
Studies have been able to assess the spatial variability of the Urban Environment for different LULC regions.

Right: Study on the Urban Cool Island in Erbil, Rasul et.al. 2015 \*









Fig. 5. Correlation coefficient between LST and wetness, brightness and greenness during summer 2013. Each plot represents a class of LULC.



\* Azad Rasul , Heiko Balzter, Claire Smith (2015) Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8, Urban Climate



#### **University** of Collaborations with industrial companies



#### LONDON; M. Perry



Land classification over central London using k-means cluster analysis of 9 LANDSAT 8 channels. Capable of 30m resolution.

Greens – parks/trees, Reds – more industrial, Purple – dense urban/commercial, Greys - represent different densities of urban/ residential cover. Black - water

Surface temperature plot over central London using LANDSAT 7 thermal data 90m resolution. LST accuracy limited by a lack of high resolution urban emissivity data.









### AATSR: London time series

AATSR Thermal imagery

#### AATSR Temperature time-series -0.400.20 330.D LONDON LST - Day 310 [7 305 320.D 300 295 310.0 8 290 300.0 N (X) 285 280 290.D 8 ŋ 260 280.D 2005 2007 2008 2009 2010 2011 2012 2004 넝 Year 270.D -0.60 -0.40 -0.200.20

Medium spatial resolution ~ 1km, with twice daily temporal sampling.

The temperature maps allow insight into a spatial snapshot of the highest risk areas as well as a detailed and accurate temporal progression of temperatures for the whole of London, giving an understanding of events such as heat waves on the city and the potential precursors of these spikes. Understanding these factors would allow steps to be taken which could potentially reduce the effect of heat related health hazards.











## **Application Review**

| Domain    | Application                                    | Domain       | Application                                         |  |  |  |
|-----------|------------------------------------------------|--------------|-----------------------------------------------------|--|--|--|
|           | Eruption clouds                                |              | UHI: Surface temperature maps                       |  |  |  |
|           | Tropospheric plumes                            |              | UHI: Vegetation maps                                |  |  |  |
|           | Hot spots and active lava flows                |              | UHI: Land cover/Land Use                            |  |  |  |
|           | Post eruptive studies on lava flows            |              | UHI: Building Information                           |  |  |  |
|           | Detection of Earthquakes                       |              | UHI: Air Quality                                    |  |  |  |
|           | Pre-eruptive detection for volcanoes           |              | Air pollution                                       |  |  |  |
|           | Detection of fires                             | Urbanisation | Differentiate between urban and industrial zone     |  |  |  |
|           | Estimation of burnt area                       |              | Oil spill detection                                 |  |  |  |
|           | Estimation of fire intensity and severity      |              | Plume detection                                     |  |  |  |
|           | Detection of coal mine fires                   |              | Mapping malaria potential regions                   |  |  |  |
|           | Detection of potential coal fires              |              | Arthropod vector ecology and disease distribution   |  |  |  |
|           | Detection of water stress in crops             |              | Mapping cholera potential regions                   |  |  |  |
| Hydrology | Detection of water stress in forest            |              | Mapping meningitis outbreak                         |  |  |  |
|           | Detection of evapotranspiration in crops       |              | Asbestos-cement detection over non-accessible areas |  |  |  |
|           | Detection of evapotranspiration in River Basin |              | Detection of minefields                             |  |  |  |
|           | Detection of evapotranspiration in continents  |              | Security and surveillance                           |  |  |  |
|           | Growing Degree Day estimations                 |              | Industrial/power plant monitoring                   |  |  |  |
|           | Growing Degree Day mapping                     |              | Trafficability (off-road soil moisture content)     |  |  |  |
|           | Cooling Degree Day estimations                 |              | Soil composition                                    |  |  |  |
|           | Prediction of floods                           |              | Identifying geothermal resources                    |  |  |  |
|           | Monitoring of floods                           | Surface      | Mapping geothermal anomalies                        |  |  |  |
|           | Mapping irrigated land                         | Variability  | Mapping dynamic variability of surface temperature  |  |  |  |







#### **Application Review - Urbanization**

|              |                                                  |                          |                    | Level - 2        |                     |             | Level -1                                                |               |                                           |                       |
|--------------|--------------------------------------------------|--------------------------|--------------------|------------------|---------------------|-------------|---------------------------------------------------------|---------------|-------------------------------------------|-----------------------|
| Domain       | Application                                      | Geophysica<br>I variable | Spatial resolution | Coverage         | Temporal resolution | Uncertainty | Supporting Data                                         | NEdT (@300 K) | Minimum TIR<br>Spectral<br>Resolution     | Other Spectral ranges |
|              | UHI: Surface<br>temperature maps                 | LST                      | <100 m             | Slobal           | Weekly (Day/Night)  | <1.0 K      |                                                         | <0.2 K        | . bands (10-12<br>.m)                     |                       |
|              |                                                  |                          | 10-100 m           | ocal to Regional | Monthly             | <1.0 K      | Land cover maps                                         | <0.2 K        | . bands (10-12<br>ım)                     | Multispectral         |
|              | UHI: Land cover / Land<br>Use                    | Maps                     | 10-100 m           | ocal to Regional | Monthly             | <1.0 K      | GIS                                                     | <0.2 K        | . bands (10-12<br>.m)                     | Multispectral-SAR     |
|              | UHI: Building<br>Information                     | LST                      | 1-10 m             | .ocal            | Monthly             | <1.0 K      | City maps                                               | <0.2 K        | . bands (10-12<br>um)                     | SAR                   |
|              | UHI: Air Quality                                 | LST                      | 20 m – 1 km        | ocal to Regional | Daily- Monthly      | KU 2 K      | Atmospheric<br>models                                   | <0.1 K        | Indefined                                 | UV-VIS                |
| r.           | Air pollution                                    | Radiance                 | <100 m             | ocal to Regional | Daily (noon)        | <0.5 K      |                                                         | <0.1 K        | lyperspectral (3-<br>5 μm)                |                       |
| Urbanization |                                                  | Storage<br>heat flux     | 100 m              | .ocal            | Sub-Daily           | <2.0 K      | Met data + surface<br>roughness                         | <0.4 K        | ∕ultispectral (≥3<br>ands in 8-12 µm)     | VNIR                  |
| dete         |                                                  | Radiance +<br>emissivity | 3-50 m             | .ocal            | Daily to Monthly    | <0.01       | Mineralogical<br>compositions + in<br>situ measurements | <0.2 K        | łyperspectral<br>with band at 9.44<br>ເm) | VNIR                  |
|              | Detection of minefields                          | LST                      | 1-5 m              | .ocal            | Sunrise/Sunset      | K0.5 K      | Emissivity + Water<br>vapour                            | <0.1 K        | . bands (10-12<br>ım)                     | VNIR                  |
|              | Security and surveillance                        | вт                       | 10-15 m            | Regional         | NRT-Daily           | <0.5 K      | DEM                                                     | <0.05 K       | -channel                                  | VNIR                  |
|              | Industrial/power plant<br>monitoring             | LST                      | 10-15 m            | .ocal            | NRT-Daily           | K2.0 K      | Sonde<br>measurements                                   | <0.4 K        | lyperspectral                             | VNIR                  |
|              | Traffic ability (off-road soil moisture content) | LST                      | 100 m              | Regional         | NRT-Daily           | K20K        | DEM, reanalysis,<br>emissivity                          | <0.4 K        | . bands (10-12<br>เm)                     | SAR                   |

### Conclusions

- Temperature is a critical attribute of city characterisation
- Land surface temperature (LST) are already proving useful in many studies of cities.
- High spatial resolution of sensors are necessary to truly achieve detailed and consistent description of cities:
  - > Operational
  - > Accurate (calibration, multiple channels for LST and emissivity)
  - ➢ 50 m spatial resolution
  - Good re-visit capability
- High spatial resolution sensors need to be linked to 1 km and geostationary sensors to provide an integrated temperature for urban areas.
- Derivation of urban LST and application will need integration with other geospatial data sets and models (energy balance, urban meteorology etc.)



